基本情況
李萍,“百人計劃”引進人才,教授,博士生導師。從事綠色低碳催化技術在水污染控制與資源化以及清潔能源開發等領域的應用研究。以第一/通訊作者在Angew. Chem. Int. Ed.,Adv. Energy Mater.,Adv. Funct. Mater.,ACS Catal.,Environ. Sci. Technol.,Appl. Catal. B,Small,J. Energy Chem.等國際期刊上發表論文40餘篇;授權發明專利10餘項;主持國家自然科學基金青年/面上等項目;擔任《Environmental Functional Materials》期刊青年編委。
聯系方式
地址:廣州大學城外環東路132号太阳集团app首页東校區太阳集团1088vip
郵編:510006
E-mail: liping56@mail.sysu.edu.cn
歡迎具有環境工程、化學工程、材料科學、市政工程等學科背景的本科生、碩士、博士、博士後等科研人員加入課題組。歡迎郵件聯系!
教育及工作經曆
(1) 2018–至今,太阳集团app首页,太阳集团1088vip,副教授、教授
(2) 2014–2018,新加坡國立大學,化學工程與生物工程系,Research Fellow
(3) 2009–2014,中國科學院化學研究所,物理化學,博士
(4) 2005–2009,西南大學,應用化學,學士
講授課程
本科生課程:環境化工原理、環境工程CAD
研究生課程:環境催化原理及應用、環境納米材料與技術
研究領域
(1) 水污染控制與資源化
(2) 環境/能源電催化理論與技術
(3) 新型環境/能源材料的精細設計與調控
科研項目
國家自然科學基金面上項目,2021-2024,主持
國家自然科學基金青年項目,2021-2023,主持
廣東省自然科學基金面上項目,2021-2023,主持
廣州市科技計劃一般項目,2021-2023,主持
太阳集团app首页“青年拔尖科研人才”培育項目,2023-2024,主持
太阳集团app首页青年教師培育項目,2019-2021,主持
太阳集团app首页“百人計劃”引進人才項目,2018-2021,主持
國家重點研發項目子課題,2025-2028
代表性研究成果(一作/通訊)
[1] Ouyang, X.; Qiao, W.; Yang, Y.; Xi, B.; Yu, Y.; Wu, Y.; Fang, J.; Li, P.; Xiong, S. Intensifying Interfacial Reverse Hydrogen Spillover for Boosted Electrocatalytic Nitrate Reduction to Ammonia. Angewandte Chemie International Edition 2025, e202422585.
[2] Li, P.; Zhao, S.; Huang, Y.; Huang, Q.; Xi, B.; An, X.; Xiong, S. Corrosion Resistant Multilayered Electrode Comprising Ni3N Nanoarray Overcoated with NiFe-Phytate Complex for Boosted Oxygen Evolution in Seawater Electrolysis. Advanced Energy Materials 2024, 14, 2303360.
[3] Li, P.; Zhao, S.; Huang, Y.; Huang, Q.; Yang, Y.; Yang, H. Multiscale Structural Engineering of a Multilayered Nanoarray Electrode Realizing Boosted and Sustained Oxygen Evolution Catalysis in Seawater Electrolysis. ACS Catalysis 2023, 13, 15360.
[4] Li, P.; Zeng, H. C. Hierarchical Nanocomposite by the Integration of Reduced Graphene Oxide and Amorphous Carbon with Ultrafine MgO Nanocrystallites for Enhanced CO2 Capture. Environmental Science & Technology 2017, 51, 12998.
[5] Li, P.; Zeng, H. C. Sandwich-Like Nanocomposite of CoNiOx/Reduced Graphene Oxide for Enhanced Electrocatalytic Water Oxidation. Advanced Functional Materials 2017, 27, 1606325.
[6] Li, P.; Liu, W.; Dennis, J. S.; Zeng, H. C. Ultrafine Alloy Nanoparticles Converted from 2D Intercalated Coordination Polymers for Catalytic Application. Advanced Functional Materials 2016, 26, 5658.
[7] Long, X.; Zhong, T.; Huang, F.; Li, P.; Zhao, H.; Fang, J.; Shu, D.; He, C. Exploring microenvironmental configuration effects of Cu-based catalysts on nitrate electrocatalytic reduction selectivity. Applied Catalysis B: Environment and Energy 2025, 365, 124944.
[8] Zhan, S.; Huang, H.; He, C.; Xiong, Y.; Li, P.; Tian, S. Controllable synthesis of substitutional and interstitial nitrogen-doped ceria: The effects of doping sites on enhanced catalytic ozonation of organic pollutants. Applied Catalysis B: Environmental 2023, 321, 122040.
[9] Li, P.; Lin, Y.; Huang, Q.; Li, W.; Zhao, S.; Fu, Y.; Chu, F.; Tian, S. Coordination environment and architecture engineering over Co4N-based nanocomposite for accelerating advanced oxidation processes. Applied Catalysis B: Environmental 2022, 302, 120850.
[10] Li, P.; Huang, Y.; Huang, Q.; Chen, R.; Li, J.; Tian, S. Cobalt phosphide with porous multishelled hollow structure design realizing promoted ammonia borane dehydrogenation: Elucidating roles of architectural and electronic effect. Applied Catalysis B: Environmental 2022, 313, 121444.
[11] Li, P.; Chen, R.; Huang, Y.; Li, W.; Zhao, S.; Tian, S. Activating transition metal via synergistic anomalous phase and doping engineering towards enhanced dehydrogenation of ammonia borane. Applied Catalysis B: Environmental 2022, 300, 120725.
[12] Li, P.; Lin, Y.; Zhao, S.; Fu, Y.; Li, W.; Chen, R.; Tian, S. Defect-engineered Co3O4 with porous multishelled hollow architecture enables boosted advanced oxidation processes. Applied Catalysis B: Environmental 2021, 298, 120596.
[13] Li, P.; Chen, R.; Zhao, S.; Li, W.; Lin, Y.; Yu, Y. Architecture Control and Electronic Structure Engineering over Ni-Based Nitride Nanocomposite for Boosting Ammonia Borane Dehydrogenation. Applied Catalysis B: Environmental 2021, 298, 120523.
[14] Li, P.; Li, W.; Huang, Y.; Huang, Q.; Tian, S. 3D Hierarchical-Architectured Nanoarray Electrode for Boosted and Sustained Urea Electro-Oxidation. Small 2023, 19, 2300725.
[15] Li, P.; Li, W.; Huang, Y.; Huang, Q.; Li, F.; Tian, S. Surface Engineering over Metal–Organic Framework Nanoarray to Realize Boosted and Sustained Urea Oxidation. Small 2023, 19, 2305585.
[16] Li, P.; Li, W.; Huang, Y.; Huang, Q.; Li, J.; Zhao, S.; Tian, S. Unconventional Phase Synergies with Doping Engineering Over Ni Electrocatalyst Featuring Regulated Electronic State for Accelerated Urea Oxidation. ChemSusChem 2023, 16, e202201921.
[17] Li, P.; Huang, Y.; Huang, Q.; Li, W.; Tian, S. Boosted urea electro-oxidation over Ni3N-based nanocomposite via systematic regulation tactic. Journal of Energy Chemistry 2023, 87, 479.
[18] Li, P.; Huang, Y.; Huang, Q.; Chen, R.; Li, J.; Tian, S. Anomalous metastable hcp Ni nanocatalyst induced by non-metal N doping enables promoted ammonia borane dehydrogenation. Journal of Energy Chemistry 2023, 79, 72.
[19] Li, P.; Huang, Y.; Ouyang, X.; Li, W.; Li, F.; Tian, S. Unusual hcp Ni with metal and non-metal dual doping modulation to realize boosted urea oxidation. Chemical Engineering Journal 2023, 464, 142570.
[20] Li, P.; Li, W.; Zhao, S.; Huang, Y.; Tian, S.; Huang, X. Advanced hydrogen evolution electrocatalysis enabled by ruthenium phosphide with tailored hydrogen binding strength via interfacial electronic interaction. Chemical Engineering Journal 2022, 429, 132557.