基本情況

胡卓鋒,男,博士,太阳集团app首页環境學院百人計劃副教授,博士生導師。2011年在太阳集团app首页碩士畢業,2014年在香港中文大學博士畢業,2018年加入太阳集团app首页環境學院。胡卓鋒副教授在過氧化物的原位制備與應用、分子氧活化、二電子水氧化技術、高級氧化、二氧化碳資源化利用、第一性原理理論計算等研究領域取得突出成果。發表論文110餘篇,第一/通訊作者論文70篇,單獨一作15篇,單獨通訊20篇,主要包括4篇Angewandte Chemie International Edition(其一為熱點論文、封底)、1篇Journal of the American Chemical Society、2篇Nature Communications、2篇Environmental Science & Technology(其一為封面)、6篇Advanced Functional Material(其一為卷頭插畫)、14篇Applied Catalysis B: Environment and Energy等。一區論文60篇,封面文章5篇,6篇SCI高被引論文,受邀撰寫綜述 2 篇:Green Chemistry (2017,19,588)和Chinese Chemical Letter (2019,30,2089)。合作撰寫專著章節一章(ACS, ISBN: 9780841236554)。授權專利14項。

 

歡迎對環境、材料、化學、物理等學科感興趣的本科生、碩士、博士、博士後與專職科研人員加盟。

 

聯系方式

地址: 廣州大學城外環東路132号太阳集团app首页東校區太阳集团1088vip(510006)A318房

E-mail:  huzhf8@mail.sysu.edu.cn

微信: 

 

教育經曆

2004.9-2008.7,太阳集团app首页,物理科學與工程技術學院材料物理專業,學士

2008.9-2011.7,太阳集团app首页,物理科學與工程技術學院材料物理與化學專業,碩士

2011.8-2014.7,香港中文大學,化學系,博士

 

教學工作

本科生課程:

《專業學術制圖技術》,太阳集团app首页一流本科課程

《室内空氣污染與淨化》

《Photoshop基礎與論文繪圖設計技巧》

《大氣污染控制工程實驗》

《環境保護前沿講座》

《數據庫與信息工程》

《環境材料》線上課程

《清潔能源》

研究生課程:

《環境問題研究創新思維與方法》

《環境科學與工程前沿講座》

 

獲獎/榮譽

廣東省第七屆高校(本科)青年教師教學大賽二等獎

2023年太阳集团app首页第11屆教學競賽一等獎

2023年太阳集团app首页環境學院教學競賽一等獎

2022年太阳集团app首页第10屆教學競賽優勝獎

2021年太阳集团app首页環境學院教學競賽優勝獎

第四屆全國大學生市政環境類創新實踐能力大賽金牌指導老師獎

 

研究方向:

分子氧活化與高級氧化水處理

元素紅磷催化劑

水熱碳環境催化劑

二電子電催化水氧化産過氧化物

第一性原理模拟理論計算

 

一,分子氧活化與高級氧化技術

氧氣占大氣的21%,但氧氣活化難、需要外加光與電能驅動、氧氣利用率低。基于此,我們開發了等多種材料,可實現在無光無電下高效活化氧氣産雙氧水與羟基自由基。我們發展合成穩定單原子金屬的方法(J. Am. Chem. Soc., 2022, 144, 22075)。利用該方法,首次得到穩定的一價銅Cu+,并自發高效還原氧氣産羟基自由基。在無光無電輸入下高效活化氧産生高達502 mmol g-1 h-1的羟基自由基,轉換頻率(Turnover frequency)高達0.78 h-1,是目前固體催化劑利用氧氣自發活化産羟基自由基的最高記錄。該材料在寬pH範圍(2-10)對珠江水、谷圍河水、湖水、自來水等實際水體中的系列污染物(布洛芬、諾氟沙星、雙酚A、苯酚、硝基苯、鄰苯二甲酸二乙酯等)高效去除。相關工作作為封面文章發表在頂級環境期刊上(Environ. Sci. Technol., 2023, 57 (12), 5024-5033)。相關技術獲授權專利3項(ZL202110647997.X,ZL202110654352.9,ZL202110531578.X)。

 

二,元素紅磷環境催化劑

磷元素是生态環境中非常重要的元素。一直以來,紅磷被認為是一種消耗品,往往用于制備火柴和阻燃劑。但最近發現,在陽光下,紅磷可把水分解,産生清潔能源氫。與其他化學燃料相比,氫的能量密度非常高,氫無毒無害,燃燒後隻有水,是一種新型的對環境無污染的高效潔淨能源。這為紅磷的應用打開了一個嶄新的思路。成功合成了纖維相紅磷,這種高度結晶性的紅磷産氫效率比商用無定形紅磷高800倍!這比之前報道的所有的元素光催化劑的産氫率都高。相關工作發表在國際頂級期Angewandte Chemie International Edition(2016, 55, 9580)上。該文章被編輯選為當期雜志的 hot paper,并入選為 cover。此外,通過理論計算,分析了纖維相紅磷的半導體性能,證明其在光照下産生的空穴也可以把水氧化成氧氣或自由基,而自由基像羟基自由基等可以降解環境污染物,相關研究發表在Small(2021,2008004)上。

       目前,紅磷工作的商業價值也得到了商界及政府的關注。多家公司前來商議紅磷環境催化商業化的可能性。該工作也多次出現在大型展覽上,如香港會展中心舉辦的International ICT Expo上,并受到一緻好評。紅磷的工作也得到香港政府的高度重視,政府多次派出記者采訪,并拍攝了相關宣傳片投放到香港政府官方網站上,作為香港一項創新性示範工作來推廣宣揚。

 

三,水熱碳環境催化劑
       通過水熱法可将存量巨大、可再生、成本低廉的生物質廢料轉化成水熱碳,在太陽光照下産生光生電子還原氧氣産生雙氧水,産率高達1160 μmol gcat-1 h-1。氧的活化沒有明顯能量墊壘,有利于氧氣的活化(Environ. Sci. Technol., 2017, 51, 7076)(ACS Catal., 2021, 11, 14480)。利用含銅廢水與生物質制備了納米銅-水熱碳,在無光無電下也能高效活化氧氣産生羟基自由基與雙氧水(Appl. Catal. B: Environ., 2022, 319, 121918)。在寬pH範圍内高效降解硝基苯、苯酚、布洛芬、雙酚A等污染物。相關技術獲授權專利5項(ZL202010055787.7,ZL202010055779.2,ZL202010879855.1,ZL202010880987.6,ZL202110757870.3)。


 

四,2電子電催化水氧化産過氧化物

       雙氧水是重要的化工原料,被廣泛應用在醫療、工業生産和環境治理等多個領域。特别是環境治理中高級氧化技術重要的氧化劑。當前工業制備雙氧水采用的2-乙基蒽醌(EAQ)法存在以下問題:它需要大型複雜的設備、氫源和昂貴的貴金屬催化劑,并且生産的高濃度雙氧水不便于運輸和貯存,容易造成自燃、爆炸等安全事故。

       提出新型水氧化技術,把水分子中的氧元素氧化成雙氧水(2H2O=H2O2+H2),充分保證氧元素供給,突破氧氣含量的局限性。我們在鎢酸鹽上實現了高效二電子電催化氧化水産雙氧水降解抗生素,産率高達360000 μmol gcat−1 h−1。目前該方法制備的雙氧水價格低至0.14元/mol,遠低于工業法制備的0.8元/mol(工業大桶裝)和10元/mol(日常便捷裝)。相關研究成果發表在國際頂級化學期刊Angewandte Chemie International Edition(2020, 59, 20538)和Nature Communications(2023, 14 , 1890.)上。進一步,發現了一種全新的不依賴水中OH的二電子反應機制,在碳式碳酸銅(Cu2(OH)2CO3)催化劑上,利用晶格”OH”做為媒介實現二電子水氧化反應,指出其與水中其它陰離子相互作用來參與到水氧化過程中産生雙氧水。相關研究被Nature Communications(2024, 15, 10456)接收。

 

五,泛函密度材料模拟計算

       近年來,第一性原理計算在材料設計和具體應用方面起着越來越重要的作用。前理論計算是做催化研究的重要手段,通過理論計算,可以預測材料的電子結構,幫助對具體的反應過程進行解說,通過結合實現數據與計算結果,提出新的反應機理。目我們前期積累了大量理論計算的經驗,主要進行如下計算:

 

不同類似催化劑性質的分析

1)半導體材料結構與能帶計算(Z. F. Hu*, et al. Angewandte. Chemie. Internation. Edition. 2016, 55, 9580)

2)無定形材料結構的計算(Z. F. Hu* et al. Applied Catalysis B: Environment and Energy, 2024, 342, 123704)

3)金屬性材料結構的計算(Z. F. Hu*, et al. Advanced Functional Materials2016, 201600239)

4)分子篩材料計算(Z. F. Hu*, et al. Small, 2023, 202300114,Z. F. Hu*, et al. Advanced Energy Materials, 2024, 14, 38)

5)兩相界面電子遷移與性質的計算(Z. F. Hu*, et al. Nano Research, 2021, 123704)

6)二維材料結構、電荷分布與能帶的計算(Z. F. Hu*, et al. Small2021, 2008004)

7)COF等聚合物材料結構、電荷分布與能帶的計算(Z. F. Hu*, et al, Advanced Functional Materal. 2022,202206579)

 

催化劑重要參數計算

1)電荷分布(bader),摻雜空位雜質原子對電荷分布的影響等,晶面上電荷分布,局域電荷分布、差分電荷等(Z. F. Hu*, et al., Environmental Science & Technology, 2017, 57, 5024)

2)電子與空穴遷移率與有效質量(Z. F. Hu* et al. Applied Catalysis B: Environment and Energy, 2024, 342, 123704)

3)不同晶面上的電荷空間分布(Z. F. Hu* et al. Applied Catalysis B: Environment and Energy, 2024, 342, 123704)

4)鍵能的計算(unpublish)

5) 态密度、晶體軌道哈密頓布局函數法COHP、(Z. F. Hu*, et al. Advanced Functional Materials2016, 201600239)

6) 分子軌道的空間計算與分析(Z. F. Hu*, etal. Chemical Engineering Journal, 2024, 500, 156975.)

7) 功函數(Z. F. Hu*, et al. Advanced Functional Materials, 2024, 34, 40, 2405527.)

8) 聲子譜(Z. F. Hu*, et al. Small2021, 2008004)

 

催化劑過程中間體與機理的計算

1)表面催化中間體計算(Z. F. Hu* et al. Applied Catalysis B: Environment and Energy, 2023, 328, 122409)

2)NEB過渡态與中間體分析,包括結構變化與能量變化(Z. F. Hu*, et al., Journal of the American Chemical Society, 2022. 144, 48, 22075,Z. F. Hu*, et al., ACS Catalysis, 2021, 11, 14480)

3)催化劑表面中間體的紅外光譜與拉曼光譜計算,結合原位紅外拉曼光譜實驗,分析催化機理過程(Z. F. Hu*, et al., Journal of the American Chemical Society, 2022. 144, 48, 22075)

 

催化劑外部影響的計算

外加電壓的影響(Angewandte Chemie-International Edition 2020, 59 , 20538)

焓、熵的影響(Z. F. Hu*, et al. Nature Communications 2023, 14, 1890)

分子動力學(MD)計算(unpublish)

 

不同催化反應的計算

1)光催化與電催化還原水産氫計算(Z. F. Hu*, et al., Angewandte Chemie-International Edition 2022, 61, 202206579.)

2) 電催化與光催化水氧化,OH-O-OOH-O2過程計算(Z. F. Hu*, et al. Nature Communications 2023, 14, 1890)

3) 氧氣還原2電子或4電子計算(Z. F. Hu* et al. Applied Catalysis B: Environment and Energy, 2024, 347, 123771)

4) 二氧化碳還原計算,包括CO2分子吸附能,CO2分子活化,COOH,CC等中間體能量過程計算(Z. F. Hu*, et al. Journal of the American Chemical Society 2022, 144 (48), 22075-22082)

5)二電子水氧化産雙氧水計算(Z. F. Hu*, et al. Nature Communications 2023, 14, 1890,Z. F. Hu*, et al. Nature Communications, 2024, 15, 10456)

6)苯甲醇氧化過程、過硫酸鹽在不同材料上活化、雙氧水在不同材料上活化的計算、小分子污染物的降解過程計算、甲烷氧化産甲醇乙烯的計算、硝酸根還原、尿素氧化、電催化産氫、有機催化反應等等。

歡迎有需要計算合作的同行聯系我們!

 

學術任職

eScience雜志青年編委

Advanced powder materials雜志青年編委

Microstructure雜志青年編委

Process專刊編委

廣東環境學會會員

中國環境科學學會會員

廣東化學學會會員

美國化學會(ACS)會員;

擔任廣東省自然科學基金委、浙江省自然科學基金委等評審專家;

雜志通訊評審人:

Chemical Review

Angewandte Chemie International Edition

Nature Communication

Energy Environmental Science

Advanced Energy Materials

Advanced Functional Materials

Small

Applied Catalysis B: Environment and Energy

Chemistry of Materials

Chemical Engineering Journal

Chinese Journal of Catalysis

ACS Applied Material Interface

Chemical Communication

Applied Surface Science

 

代表性研究論文

  • 1. Wang R., Luo H., Duan C., Liu H., Sun M., Zhou Q., Lu Y., Ou Z., Luo G., Yu C., Hu Z. F*, Crystal OH mediating pathway for hydrogen peroxide production via twoelectron water oxidation in non-carbonate electrolytes, Nature Communications, 2024, 15, 10456. 
  • 2. He, Q.; Li, H.; Hu, Z. F.*; Lei, L.; Wang, D.*; Li, T.*, Highly Selective CO2 Electroreduction to C2 H4 Using a Dual‐sites Cu(II) Porphyrin Framework Coupled with Cu2 O Nanoparticles via a Synergetic‐tandem Strategy. Angewandte Chemie-International Edition, 2024, 63, 33, 202407090.
  • 3. Li, L. J.; Hu Z. F.*; Kang, Y. Q.; Cao, S. Y.; Xu, L. P.; Yu, L.; Zhang, L. Z.*; Yu, J. C.*, Electrochemical Generation of Hydrogen Peroxide from a Zinc Gallium Oxide Anode with Dual Active Sites, Nature Communications, 2023, 14 (1), 1890.
  • 4. Zheng, N. C.; Li, L. J.; Tang, X. H.; Xie, W. Q.; Zhu, Q.; Wang, X. L.; Lian, Y. K.; Yu, J. C.; Hu, Z. F.*, Spontaneous Formation of Low Valence Copper on Red Phosphorous to Effectively Activate Molecular Oxygen for Advanced Oxidation Process, Environmental Science & Technology,2023, 57 (12), 5024-5033封面文章
  • 5. Ou, H.; Ning, S.; Zhu, P.; Chen, S.; Han, A.; Kang, Q.; Hu, Z. F.*; Ye, J.*; Wang, D.; Li, Y.*, Carbon Nitride Photocatalysts with Integrated Oxidation and Reduction Atomic Active Centers for Improved CO2 Conversion. Angewandte Chemie-International Edition, 2022 62, 202206579
  • 6. Ou, H.;  Li, G.; Ren, W.;  Pan, B.;  Luo, G.; Hu, Z. F.*;  Wang, D.*; Li, Y.*,, Atomically Dispersed Au Assisted C-C Coupling on Red Phosphorus for CO2 Photoreduction to C2H6.Journal of the American Chemical Society, 2022. 144, 48, 22075
  • 7. Li, L. J.; Hu, Z. F.*; Yu, J. C.* On-Demand Synthesis of H2O2 by Water Oxidation for Sustainable Resource Production and Organic Pollutant Degradation, Angewandte Chemie International Edition, 2020, 59, 20538-20544.
  • 8. Hu, Z. F.; Yuan, L. Y.; Liu. Z. F.; Shen. Z. R.*; Yu, J. C.* An Elemental Phosphorus Photocatalyst with a Record High Hydrogen Evolution Efficiency, Angewandte Chemie International Edition, 2016, 31, 55, 9580-9585. hot paper and inside back cover 
  • 9. Hu, Z. F.; Shen, Z. R.*; Yu, J. C.* Converting Carbohydrates to Carbon-based Photocatalysts for Environmental Treatment. Environmental Science & Technology, 2017, 51, 7076-7083
  • 10. Li, L.; Wang, L.; Jia, G.; Xu, L.; Chen, J.; Hu, Z. F.*; Yu, J. C.*, Photocatalytic Achmatowicz Rearrangement on Triphenylbenzene–Dimethoxyterephthaldehyde–Covalent Organic Framework-Mo for Converting Biomass-Derived Furfuryl Alcohol to Hydropyranone. ACS Nano, 2024, 18, 48, 33142–33151.

 

2024年

  • 1. Wang R., Luo H., Duan C., Liu H., Sun M., Zhou Q., Lu Y., Ou Z., Luo G., Yu C., Hu Z. F*, Crystal OH mediating pathway for hydrogen peroxide production via twoelectron water oxidation in non-carbonate electrolytes, Nature Communications, 2024, 15, 10456. 
  • 2. He, Q.; Li, H.; Hu, Z. F.*; Lei, L.; Wang, D.*; Li, T.*, Highly Selective CO2 Electroreduction to C2 H4 Using a Dual‐sites Cu(II) Porphyrin Framework Coupled with Cu2 O Nanoparticles via a Synergetic‐tandem Strategy. Angewandte Chemie-International Edition, 2024, 63, 33, 202407090.
  • 3. Li, L.; Wang, L.; Jia, G.; Xu, L.; Chen, J.; Hu, Z. F.*; Yu, J. C.*, Photocatalytic Achmatowicz Rearrangement on Triphenylbenzene–Dimethoxyterephthaldehyde–Covalent Organic Framework-Mo for Converting Biomass-Derived Furfuryl Alcohol to Hydropyranone. ACS Nano, 2024, 18, 48, 33142–33151.
  • 4. Liu, B.; Li, Y.; Guo, Y.; Tang, Y.; Wang, C.; Sun, Y.; Tan, X.; Hu, Z. F.*; Yu, T.*, Regulating the Transfer of Photogenerated Carriers for Photocatalytic Hydrogen Evolution Coupled with Furfural Synthesis. ACS Nano, 2024, 18, 27, 17939–17949.
  • 5. Liu, Y.; Huang, S.; Lu, J.; Niu, S.; Shen, P. K.; Hu, Z. F.*; Tsiakaras, P.*; Gao, S.*, Ni0.25 Cu0.5 Sn0.25 Nanometallic Glasses as Highly Efficient Catalyst for Electrochemical Nitrate Reduction to Ammonia. Advanced Functional Materials, 2024, 2411325. 
  • 6. Tang, Y.; Sun, Y.; Li, Y.; Guo, Y.; Liu, B.; Tan, X.; Hu, Z. F.*; Zhong, D.; Ye, J.; Yu, T.*, Photothermal Effect of Cu NCs on CdS Homojunction Boosting Hydrogen Evolution in Alkaline Seawater. Advanced Functional Materials, 2024, 34, 40, 2405527. 
  • 7. Wang, R.; Luo, H.; Sun, M.; Duan, C.; Zhou, Q.; Lu, Y.; Ou, Z.; Liu, H.; Luo, G.; Hu, Z. F.*, Characterization and H2O2 Production Mechanisms Study on Self-Oxidized Graphite during the Two-Electron Water Oxidation Electrochemical Process. Journal of Catalysis, 2024, 434, 115521. 
  • 8. Duan, C.; Lu, Y.; Ou, Z.; Sun, M.; Luo, G.; Liu, H.; Wang, R.; Wang, Y.; Hu, Z. F.*, Undervalued Role of Metal-Carbon Junction in Selective Generation of H2O2: An Example of the Zinc-Carbon Junction Edge Providing Asymmetric Active Sites for Efficient Oxygen Reduction. Chemical Engineering Journal, 2024, 500, 156975.
  • 9. Zhang, X.; Zhou, Q.; Zhu, Y.; Cai, J.; Lu, Y.; Wang, R.; Duan, C.; Ou, Z.; Sun, M.; Luo, G.; Liu, H.; Hu, Z. F.*, Selective Electrocatalytic Oxidation of Ammonia to Nitrogen by Using Titanium Dioxide Nanorod Array Decorated with Ultrasmall Ir Nanoparticles and Non-Noble Metal Fe Nanoparticles. Separation and Purification Technology, 2024, 348, 127808.
  • 10. Lu, Y.; Duan, C.; Wang, Y.; Wang, X.; Yin, Y.; Han, Q.; Ou, Z.; Luo, G.; Sun, M.; Li, G.; Hu, Z. F.*, Generation of H2O2 via Simultaneous Treatment of Cotton and Organic Pollutants in Textile Wastewater. Separation and Purification Technology, 2025, 355, 129567.
  • 11. Lu, Y.; Yue, X.; Cai, J.; He, X.; Li, L.; Zhou, Q.; Duan, C.; Wang, R.; Sun, M.; Ou, Z.; Liu, H.; Luo, G.; Wang, X.; Yu, J. C.; Hu, Z. F.*, Synthesis of High-Efficiency Phosphatized Catalysts by Using Organophosphorus and Biomass for Photocatalytic Hydrogen Peroxide Production via Oxygen Reduction. Applied Catalysis B: Environment and Energy, 2024, 123771. 
  • 12. Zhou, Q.; Yan, Z.; Lan, Y.; Ou, Z.; Hu, R.; Wang, X.; Yang, Z.; Chen, Y.; Cai, J.; Lu, Q.; Wang, S.; Yu, J. C.; Li, L.; Hu, Z. F.*, A General Strategy to Enhance Hydrogen Peroxide Generation via Two-Electron Water Oxidation by Antimony Modification for Removal of Triethyl Phosphate and Hexavalent Chromium. Applied Catalysis B: Environment and Energy, 2024, 342, 123427. 
  • 13. Bai, X.*; Guo, L.; Jia, T.; Hu, Z. F.*, Superhydrophilic Covalent Organic Frameworks Accelerate Photocatalytic Production of Hydrogen Peroxide through Proton Channels. Journal of Materials Chemistry A,2024, 12, 22, 13116–13126. 
  • 14. Guo, W.; Wei, Q.; Li, G.; Wei, F.*; Hu, Z. F.*, A Bulk Oxygen Vacancy Dominating WO3−x Photocatalyst for Carbamazepine Degradation. Nanomaterials, 2024, 14, 11, 923. 
  • 15. Nie, Y.; Li, Y.; An, C.; Tan, X.; Hu, Z. F.*; Ye, J. Yu, T.*, Promoted Selectivity of Photocatalytic CO2 Reduction to C2H4 via Hybrid CuxCoSy Possessing Dual Unsaturated Sites. Applied Catalysis B: Environment and Energy, 2024, 345, 123704. 
  • 16. Yan, Z.*; Wang, K.; Wei, W.*; Zhao, X.; Jiang, Z.*; Hu, Z. F.*; Zhu, G., Comparison of Cost and Performance between Traditional and Green Processes for Producing Bimetallic Carbide Based Oxygen Reduction Electrocatalysts. International Journal of Hydrogen Energy, 2024, 94, 385–393.
  • 17. Bian, J.; Zhang, W.; Ng, Y. H.; Hu, Z. F.; Wei, Z.; Liu, Y.; Deng, J.; Dai, H.*; Jing, L.*, Transforming Red Phosphorus Photocatalysis: Dual Roles of Pre‐anchored Ru Single Atoms in Defect and Interface Engineering. Angewandte Chemie-International Edition, 2024, 63, 45, e202409179. 
  • 18. Chen, Y.; Zhu, K.; Qin, W.; Jiang, Z.; Hu, Z. F.; Sillanpää, M.; Yan, K.*, Enhanced Electron Transfer Using NiCo2O4@C Hollow Nanocages with an Electron-Shuttle Effect for Efficient Tetracycline Degradation. Chemical Engineering Journal, 2024, 488, 150786. 
  • 19. Huang, Y.; Zhu, K.; Hu, Z. F.; Chen, Y.; Li, X.; Jiang, Z.; Sillanpää, M.; Zhao, J.; Qiu, R.; Yan, K.*, Solvent-Free Synthesis of Foam Board-like CoSe2 Alloy to Selectively Generate Singlet Oxygen via Peroxymonosulfate Activation for Sulfadiazine Degradation. Journal of Hazardous Materials, 2024, 466, 133611. 
  • 20. Kuang, C.; Wu, Y.; Zeng, G.; Zhou, Y.; Hu, Z. F.; Li, D.; Zhong, J.; Wang, R.; Yang, Y.; Li, C.*, Edge State Engineering of Nitrogen/Phosphorus Co-Doped Graphene Nanoribbons towards Electron-Transfer-Based Peroxydisulfate Activation. Separation and Purification Technology, 2024, 350, 127842. 
  • 21. Liu, B.; Zhang, B.; Liu, B.; Hu, Z. F.; Dai, W.; Zhang, J.; Feng, F.; Lan, B.; Zhang, T.; Huang, H.*, Surface Hydroxyl and Oxygen Vacancies Engineering in ZnSnAl LDH: Synergistic Promotion of Photocatalytic Oxidation of Aromatic VOCs. Environmental Science & Technology, acs.est.3c08860. 
  • 22. Lu, X.; Chen, Z.; Hu, Z. F.; Liu, F.; Zuo, Z.; Gao, Z.; Zhang, H.; Zhu, Y.; Liu, R.; Yin, Y.; Cai, Y.; Ma, D.*; Zhang, Q.*, Boosted Charge Transfer for Highly Efficient Photosynthesis of H2 O2 over Z‐scheme I− /K+ Co‐doped g‐C3 N4 /Metal–Organic‐frameworks in Pure Water under Visible Light. Advanced Energy Materials, 2024, 14, 38, 2401873. 
  • 23. Pei, X.; Bian, J.; Zhang, W.; Hu, Z. F.; Ng, Y. H.; Dong, Y.; Zhai, X.; Wei, Z.; Liu, Y.; Deng, J.; Dai, H.*; Jing, L.*, Overcoming Defect Limitations in Photocatalysis: Boron‐incorporation Engineered Crystalline Red Phosphorus for Enhanced Hydrogen Production. Advanced Functional Materials, 2024, 34, 29, 2400542. 
  • 24. Wang, K.; Hu, Z. F.; Yu, P.; Balu, A. M.; Li, K.; Li, L.; Zeng, L.; Zhang, C.; Luque, R.; Yan, K.*; Luo, H.*, Understanding Bridging Sites and Accelerating Quantum Efficiency for Photocatalytic CO2 Reduction. Nano-Micro Lett, 2024, 16, 1, 5. 
  • 25. Xue, F.; Kang, S.*; Pan, Z.; Li, L.*; Hu, Z. F.; Sheng, X.; Li, B.; Lu, W.; Wang, L.; Nie, M., Mo-Based MXenes as Highly Selective Two-Electron Oxygen Reduction Catalysts for H2O2 Production. Electrochimica Acta, 2024, 491, 144356. 

 

2023年

  • 1. Li, L. J.; Hu Z. F.*; Kang, Y. Q.; Cao, S. Y.; Xu, L. P.; Yu, L.; Zhang, L. Z.*; Yu, J. C.*, Electrochemical Generation of Hydrogen Peroxide from a Zinc Gallium Oxide Anode with Dual Active Sites, Nature Communications,2023, 14 (1), 1890.
  • 2. Zheng, N. C.; Li, L. J.; Tang, X. H.; Xie, W. Q.; Zhu, Q.; Wang, X. L.; Lian, Y. K.; Yu, J. C.; Hu, Z. F.*, Spontaneous Formation of Low Valence Copper on Red Phosphorous to Effectively Activate Molecular Oxygen for Advanced Oxidation Process, Environmental Science & Technology, 2023, 57 (12), 5024-5033封面文章
  • 3. Zheng, N.; Tang, X.; Lian, Y.; Ou, Z.; Zhou, Q.; Wang, R.; Hu, Z. F.*, Low-Valent Copper on Molybdenum Triggers Molecular Oxygen Activation to Selectively Generate Singlet Oxygen for Advanced Oxidation Processes. Journal of Hazardous Materials, 2023, 452, 131210.
  • 4. Chen, C. Y. Wang, X. L.; Pan, B. J.; Xie, W. Q.; Zhu, Q.; Meng, Y. L.; Hu, Z. F.*; Sun, Q. M.*, Construction of a novel cascade electrolysis-heterocatalysis system by using zeolite-encaged ultrasmall palladium catalysts for H2O2 generation, Small, 2023, 202300114. 
  • 5. Wang, C.; Tang, Y.; Geng, Z.; Guo, Y.; Tan, X.; Hu, Z. F.*; Yu, T.*, Modulating Charge Accumulation via Electron Interaction for Photocatalytic Hydrogen Evolution: A Case of Fabricating Palladium Sites on ZnIn2 S4 Nanosheets. ACS Catalysis, 2023, 13, 17, 11687–11696.
  • 6. Wu, X.; Zhong, R.; Lv, X.; Hu, Z. F.*; Xia, D.; Li, C.; Song, B.*; Liu, S.*, Modulating G-C3N4-Based van Der Waals Heterostructures with Spatially Separated Reductive Centers for Tandem Photocatalytic CO2 Methanation. Applied Catalysis B: Environment and Energy, 2023, 330, 122666. 
  • 7. Xu, L. P.; Li, L. J.; Hu, Z. F.*; Yu, J. C.*, EDTA-enhanced photocatalytic oxygen reduction on K-doped g-C3N4 with N-vacancies for efficient non-sacrificial H2O2 synthesis, Journal of Catalysis, 2023, 418, 300. 
  • 8. Xu, L. P.; Li, L. J.; Hu, Z. F.*; Yu, J. C.*, Boosting alkaline photocatalytic H2O2 generation by incorporating pyrophosphate on g-C3N4 for effective proton shuttle and oxygen activation, Applied Catalysis B-Environmental, 2023, 328. 122490.
  • 9. Dong, T.; Ji, J.; Yu, L.; Huang, P.; Li, Y.; Suo, Z.; Liu, B.; Hu, Z. F.; Huang, H.*, Tunable Interfacial Electronic Pd–Si Interaction Boosts Catalysis via Accelerating O2 and H2 O Activation. JACS Au, 2023, 3, 4, 1230–1240.
  • 10. Li, F.; Tang, X.; Hu, Z. F.; Li, X.; Li, F.; Xie, Y.; Jiang, Y.; Yu, C.*, Boosting the Hydrogen Peroxide Production over In2S3 Crystals under Visible Light Illumination by Gallium Ions Doping and Sulfur Vacancies Modulation, Chinese Journal of Catalysis, 2023, 55, 253–264..
  • 11. Liu, B.; Hu, Z. F.; Zhang, B.; Liu, B.; Li, G.; Zhang, T.; Ji, J.; Li, K.; Dai, W.; Zhang, J.; Huang, H.*, Deep Photocatalytic Oxidation of Aromatic VOCs on ZnSn LDH: Promoting Role of Electron Enrichment of Surface Hydroxyl. ACS Catalysis, 2023, 13, 12, 7857–7867.
  • 12. Lu, Q.; Xu, X.; Fang, W.; Wang, H.; Liang, Z.; Cai, R.; Hu, Z. F.; Shim, H.; Rossetti, S.; Wang, S.*, Metal(Loid)s in Organic-Matter-Polluted Urban Rivers in China: Spatial Pattern, Ecological Risk and Reciprocal Interactions with Aquatic Microbiome. Journal of Hazardous Materials, 2023, 457, 131781. 
  • 13. Ye, S.; Lian, X.; Liu, B.; Huang, H.*; Zhang, B.; Hu, Z. F.; Fu, X.; Li, G.; Zhang, Z., Deep Oxidation of Toluene via Combining a Bifunctional Catalyst with VUV Photolysis. Applied Catalysis B: Environment and Energy, 2023, 334, 122802.
  • 14. Zhang, M.; Xu, Z.; Liu, B.; Duan, Y.; Zheng, Z.; Li, L.; Zhou, Q.; Matveeva, V. G.; Hu, Z. F.; Yu, J.; Yan, K.*, Anchoring Hydroxyl Intermediate on NiCo(OOH) Nanosheets to Enable Highly Efficient Electrooxidation of Benzyl Alcohols. AIChE Journal, 2023, 69, 7, e18077.

 

2022年

  • 1. Ou, H.; Ning, S.; Zhu, P.; Chen, S.; Han, A.; Kang, Q.; Hu, Z. F.*; Ye, J.*; Wang, D.; Li, Y.*, Carbon Nitride Photocatalysts with Integrated Oxidation and Reduction Atomic Active Centers for Improved CO2 Conversion. Angewandte Chemie-International Edition, 2022 62, 202206579
  • 2. Ou, H.;  Li, G.; Ren, W.;  Pan, B.;  Luo, G.; Hu, Z. F.*;  Wang, D.*; Li, Y.*,, Atomically Dispersed Au Assisted C-C Coupling on Red Phosphorus for CO2 Photoreduction to C2H6.Journal of the American Chemical Society, 2022. 144, 48, 22075
  • 3. Yan, Z.*; Zhang, Y.; Jiang, Z.*; Jiang, D.; Wei, W.; Hu, Z. F.*, Nitrogen-Doped Bimetallic Carbide-Graphite Composite as Highly Active and Extremely Stable Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media. Advanced Functional Materials, 2022. 2204031
  • 4. Zheng, N. C.;  He, X.; Zhou, Q.;  Wang, R. L.;  Zhang, X. R.; Hu, R. T.; Hu, Z. F.*, Generation of reactive chlorine species via molecular oxygen activation on a copper chloride loaded hydrothermal carbonaceous carbon for advanced oxidation process. Applied Catalysis B-Environmental, 2022, 319
  • 5. Zheng, N.; He, X.; Hu, R.; Wang, R.; Zhou, Q.; Lian, Y.; Hu, Z. F.*, In-Situ Production of Singlet Oxygen by Dioxygen Activation on Iron Phosphide for Advanced Oxidation Processes. Applied Catalysis B-Environmental, 2022, 307, 121918. 
  • 6. Yan, C.; Luo, W.; Yuan, H.; Liu, G.; Hao, R.; Qin, N.; Wang, Z.; Liu, K.; Wang, Z.; Cui, D.*; Hu, Z. F.*; Lan, Y.*; Lu, Z*., Stabilizing Intermediates and Optimizing Reaction Processes with N Doping in Cu2O for Enhanced CO2 Electroreduction. Applied Catalysis B-Environmental, 2022, 308. 
  • 7. Li, L.; Xu, L.; Chan, A. W. M.; Hu, Z. F.*; Wang, Y.; Yu, J. C.*, Direct Hydrogen Peroxide Synthesis on a Sn-Doped Cuwo4/Sn Anode and an Air-Breathing Cathode. Chemistry of Materials, 2022, 34, 63-71. 
  • 8. Zheng, N.; Lian, Y.; Zhou, Q.; Wang, R.; He, X.; Hu, R.; Hu, Z. F.*, An Effective Fenton Reaction by Using Waste Ferric Iron and Red Phosphorus. Chemical Engineering Journal, 2022, 437. 
  • 9. Hu, Z. F.*; Huang, Y.; He, X.; Guo, W.; Yan, K.*, Solution-Phase Conversion of Glucose into Semiconductive Carbonaceous Nanosheet Photocatalysts for Enhanced Environmental Applications. Chemical Engineering Journal, 2022, 427.
  • 10. Li, L.; Xiao, K.; Wong, P. K.; Hu, Z. F.*; Yu, J. C.*, Hydrogen Peroxide Production from Water Oxidation on a Cuwo4 Anode in Oxygen-Deficient Conditions for Water Decontamination. ACS Applied Materials & Interfaces, 2022, 14, 7878-7887. 
  • 11. Li, G.; Hu, Z. F.*, Bottom-up Synthesis of Semiconductive Carbonaceous Nanosheets on Hematite Photoanode for Photoelectrochemical Water Splitting. Nano Research, 2022, 15, 627-636. 
  • 12. Zheng, N.; Zhou, Q.; Wang, R.; Lian, Y.; He, X.; Hu, R.; Hu, Z. F.*, Rust Triggers Rapid Reduction of Cr-6+ by Red Phosphorus: The Importance of Electronic Transfer Medium of Fe-3+. Chemosphere, 2022, 303. 
  • 13. He, Z.; Zheng, N.; Zhang, L.; Tian, Y.; Hu, Z. F.*; Shu, L.*, Efficient Inactivation of Intracellular Bacteria in Dormant Amoeba Spores by Fep. Journal of Hazardous Materials, 2022, 425.
  • 14. Cai, J.*; Yang, F.; Zhu, J.; Si, L.; Shi, X.; Shao, L.; Sun, Z.; Hu, Z. F.*; Shen, P.*, Hierarchical Hollow Mixed Metal Sulfides Microspheres Assembly from Nis Nanoparticles Anchored on Mos2 Nanosheets and Coated with N-Doped Carbon for Enhanced Sodium Storage. Journal of Alloys and Compounds, 2022, 895. 
  • 15. Wu, Y.; Chen, X.; Cao, J.; Zhu, Y.; Yuan, W.; Hu, Z. F.; Ao, Z.; Brudvig, G. W.; Tian, F.; Yu, J. C.; Li, C.*, Photocatalytically Recovering Hydrogen Energy from Wastewater Treatment Using MoS2 @TiO2 with Sulfur/Oxygen Dual-Defect. Applied Catalysis B-Environmental, 2022, 303.

 

2021年

  • 1. Li, L. J.; Xu, L. P.; Hu, Z. F.*; Yu, J. C.* Enhanced Mass Transfer of Oxygen through a Gas–Liquid–Solid Interface for Photocatalytic Hydrogen Peroxide Production, Advanced Functional Materials 2021, 202106120.
  • 2. Hu, Z. F.*; Guo, W., Fibrous Phase Red Phosphorene as a New Photocatalyst for Carbon Dioxide Reduction and Hydrogen Evolution. Small 2021, 2008004. 
  • 3. Xu, L. P.; Li, L. J.; Liu, Y.; Hu, Z. F.* Yu, J. C.* Fabrication of a Photocatalyst with Biomass Waste for H2O2 Synthesis, ACS Catalysis 2021, 11, 14480−14488. 
  • 4. Lu, Y. L.(2018級本科生); Liu M. H. (2018級本科生); Zheng, N. C.; He, X.; Hu, R. T.; Wang, R. L.; Zhou, Q.; Hu, Z. F.* Promoting the Protonation Step on the Interface of Titanium Dioxide for Selective Photocatalytic Reduction of CO2 to CH4 by Using Red Phosphorus Quantum Dots, Nano Research 2021. 2021, 15, 3042-3049.
  • 5. Hu, Z. F.*; Lu, Y. L. (2018級本科生); Liu, M. H. (2018級本科生); Zhang, X. Y(2017級本科生). Cai, J. J.* Crystalline red phosphorus for selectively photocatalytic reduction of CO2 into CO. Journal of Materials Chemistry A 2021, 9, 338-348. 
  • 6. Xu, L.; Liu, Y.; Hu, Z. F.*; Yu, J. C.*, Converting Cellulose Waste into a High-Efficiency Photocatalyst for Cr(Vi) Reduction Via Molecular Oxygen Activation. Applied Catalysis B: Environment and Energy2021, 295, 120253. 
  • 7. Zheng, N.; He, X.; Hu, R.; Guo, W.; Hu, Z. F,*, Co-activation of persulfate by cation and anion from FeP for advanced oxidation processes, Applied Catalysis B: Environment and Energy  2021, 298, 120505.
  • 8. Peng, Y.; He, X.; Zheng, N.; Hu, R.; Guo, W.; Hu, Z. F,* Transferring waste of biomass and heavy metal into photocatalysts for hydrogen peroxide activation. Chemical Engineering Journal 2021, 420, 129867. 
  • 9. Liu, Y.; Hu, Z. F*; Yu, J. C.*, Photocatalytic degradation of ibuprofen on S-doped BiOBr. Chemosphere2021, 278, 130376. 
  • 10. Lan, Y.; Kang, S.; Cui, D.*; Hu, Z. F.*, A High-Efficiency Hematite Photoanode with Enhanced Bonding Energy around Fe Atoms. Chemistry-A European Journal2021, 27, 4089-4097.
  • 11. Hu, Z. F.*; Guo, W., New Insight into the Effect of Interface Supercapacitance on the Performance of Titanium Dioxide/Carbon Nanowire Array for Photoelectrochemical Water Oxidation. Chinese Chemical Letters 2021, 32 (11), 3359-3363..
  • 13. Zheng, N.; He, X.; Guo, W.; Hu, Z. F.*, Enhancement of Mass Transfer Efficiency and Photoelectrochemical Activity for Tio2 Nanorod Arrays by Decorating Ni3+-States Functional Nio Water Oxidation Cocatalyst. Chinese Chemical Letters 2021 32, 6, 1993-1997
  • 14. Wu, Y.; Hu, Y.; Han, M.; Ouyang, Y.; Xia, L.; Huang, X.; Hu, Z. F.; Li, C.*, Mechanism Insights into the Facet-Dependent Photocatalytic Degradation of Perfluorooctanoic Acid on Biocl Nanosheets. Chemical Engineer Journal  2021, 425, 130672.
  • 15. Yang, Z.; Li, X.; Huang, Y.; Chen, Y.; Wang, A.; Wang, Y.; Li, C.; Hu, Z. F; Yan, K.*, Facile synthesis of cobalt-iron layered double hydroxides nanosheets for direct activation of peroxymonosulfate (PMS) during degradation of fluoroquinolones antibiotics. Journal of Cleaner Production (IF=9.30)2021, 310, 127584.

 

2020年

  • 1. Li, L. J.; Hu, Z. F.*; Yu, J. C.* On-Demand Synthesis of H2O2 by Water Oxidation for Sustainable Resource Production and Organic Pollutant Degradation, Angewandte Chemie International Edition, 2020, 59, 20538-20544. 
  • 2. He, X.; Zheng, N. C.; Hu, R. T.; Hu, Z. F.*; Yu, J. C.* Hydrothermal and Pyrolytic Conversion of Biomasses into Catalysts for Advanced Oxidation Treatments, Advanced Functional Materials, 2020, 2006505. 
  • 3. Hu, Z. F.; Liu, W. W(2016級本科生). Conversion of Biomasses and Copper into Catalysts for Photocatalytic CO2 Reduction. ACS Applied Material & Interface (IF=8.81) 2020, 46, 51366-51373 
  • 4. Liu, Y.; Hu, Z. F.*; Yu, C. J.*; Fe Enhanced Visible-Light-Driven Nitrogen Fixation on BiOBr Nanosheets. Chemistry of Materials, 2020, 32, 1475-1487. Journal Cover.
  • 5. Lan, Y. C.; Niu, G. Q.; Wang, F.; Cui, D. H.*; Hu, Z. F.*, SnO2-Modified Two-Dimensional CuO for Enhanced Electrochemical Reduction of CO2 to C2H4, ACS Applied Material & Interface, 2020, 12, 36128-36136. 
  • 6. Hu, Z. F.*; Gong, J. B.; Ye, Z.; Liu, Y.; Xiao, X. D.; Yu, J. C.* Cu(In,Ga)Se2 for selective and efficient photoelectrochemical conversion of CO2 into CO, Journal of Catalysis, 2020, 384, 88-95. 
  • 7. Kang, S.; Xia, F.; Hu, Z. F.*; Hu, W.; She, Y.; Wang, L.; Fu, X.; Lu, W. Q.* Platinum nanoparticles with TiO2–skin as a durable catalyst for photoelectrochemical methanol oxidation and electrochemical oxygen reduction reactions, Electrochimica Acta (IF=6.90) 2020, 343, 136119. 
  • 8. Peng, Y.; Kang, Shuai,*; Hu, Z. F.* Pt Nanoparticle-Decorated CdS Photocalysts for CO2 Reduction and H2 Evolution. ACS Applied Nano Material, 2020, 3, 9, 8632-8639. 
  • 9. Ye, Z.; Hu, Z. F.; Yang, L. X.; Xiao, X.D. Stable p-type Cu:CdS1-xSex/Pt Thin-Film Photocathodes with Fully Tunable Bandgap for Scavenger-Free Photoelectrochemical Water Splitting. Solar RRL (IF=7.52) 2020, 1900567
  • 10. Li, T. H.; Kang, S.; Zhang, X.; Fu, X.; Feng, S. L.; Hu, Z. F.; Zhu, D. L.; Lu, W. Q. Improved hydrogen evolution at high temperature using an electro-thermal method. Journal of Physics D: Applied Physics (IF=3.17). 2020, 53 185302
  • 11. Efficient Electronic Transport in Partially Disordered Co3O4 Nanosheets for Electrocatalytic Oxygen Evolution Reaction. Li, L. J.; Hu, Z. F.; Tao, L.; Xu, J. B.; Yu, J. C. ACS Applied Energy Materials (IF=4.47) 2020, 3, 3071-3081

 

2019年

  • 1. Liu, Y.; Hu, Z. F.*; Yu, J. C.*, Liquid bismuth initiated growth of phosphorus microbelts with efficient charge polarization for photocatalysis. Applied Catalysis B: Environment and Energy, 2019, 247, 100-106. 
  • 2. Lan, Y. C.; Xie, Y. Z.; Chen, J. X.; Hu, Z. F.*; Cui, D. H.* Selective photocatalytic CO2 reduction on copper-titanium dioxide-a study of the relationship between CO production and H2 suppression. Chemical Communications 2019, 55, 8068-8071. Journal Cover 
  • 3. Zhang, Y. T.; Shen, Z. R.*; Xin, Z. K.; Hu, Z. F.*; Ji, H. M. Interfacial charge dominating major active species and degradation pathways: An example of carbon based photocatalyst. Journal of Colloid and Interface Science, 2019, 554, 743-751. 
  • 4. Yang, Y. L.; Hu, Z. F.*; Ma, J. M.*; 2020 Roadmap on gas-involved photo- and electro- catalysis. Chinese Chemical Letters (IF=6.62). 2019, 30, 2089-2109. 

 

2018年前

  • 1. Hu, Z. F.; Yuan, L. Y.; Liu. Z. F.; Shen. Z. R.* ; Yu, J. C.* An Elemental Phosphorus Photocatalyst with a Record High Hydrogen Evolution Efficiency, Angewandte Chemie International Edition2016, 55, 9580-9585. hot paper and inside back cover.
  • 2. Hu, Z. F.; Liu, G.; Chen. X. Q.; Shen. Z. R.*; Yu, J. C.*Enhancing charge separation in metallic photocatalysts: a case study of the conducting molybdenum dioxide, Advanced Functional Materials, 2016, 26, 4445-4455.
  • 3. Hu, Z. F.; Shen, Z. R.*; Yu, J. C.* Converting Carbohydrates to Carbon-based Photocatalysts for Environmental Treatment. Environmental Science & Technology, 2017, 51. 7076-7083.
  • 4. Hu, Z. F.; Shen, Z. R.*; Yu, J. C.* Covalent Fixation of Surface Oxygen Atoms on Hematite Photoanode for Enhanced Water Oxidation. Chemistry of Materials, 2016, 28, 564-572.
  • 5. Hu, Z. F.; Shen, Z.*; Yu, J. C.*; Cheng, F., Intrinsic defect based homojunction: A novel quantum dots photoanode with enhanced charge transfer kinetics. Applied Catalysis B: Environment and Energy, 2017, 203, 829-838.
  • 6.Hu, Z. F.; Shen, Z. R.*; Yu, J. C.*, Phosphorus containing materials for photocatalytic hydrogen evolution. Green Chemistry, 2017, 19, 588-613.
  • 7. Hu, Z. F.; Xu, M. K.; Shen, Z. R.*; Yu, J. C.* A nanostructured chromium (III) oxide/ tungsten (VI) oxide p-n junction photoanode toward enhanced faradaic efficiency for water oxidation. Journal of Materials Chemistry A,  2015, 3, 14046-14053.
  • 8. Hu, Z. F.; Yu, J. C*; Ming, T; Wang, J. F. A wide-spectrum-responsive TiO2 photoanode for photoelectrochemical cells. Applied Catalysis B: Environment and Energy, 2015, 168-169, 483-489.
  • 9. Hu, Z. F.; Yu, J. C.* Pt3Co-loaded CdS and TiO2 for photocatalytic hydrogen evolution from water. Journal of Materials Chemistry A, 2013, 1, 12221-12228.
  • 10. Hu, Z. F.; Yan, Z. X.; Shen, P. K.*; Zhong, C. J. Nano-architectures of ordered hollow carbon spheres filled with carbon webs by template-free controllable synthesisNanotechnology, 2012, 23, 485404.
  • 11. Hu, Z. F.; Chen, C.; Meng, H.; Wang, R. H.; Shen, P. K.*; Fu, H. G. Oxygen reduction electrocatalysis enhanced by nanosized cubic vanadium carbide. Electrochemistry Communications, 2011, 13, 763-765.
  • 12 Ye, M.Y.; Zhao, Z. H.; Hu, Z. F.; Liu, L. Q.; Ji, H. M.; Shen, Z. R.*; Ma, T. Y.*, 0D/2D Heterojunctions of Vanadate Quantum Dots/Graphitic Carbon Nitride Nanosheets for Enhanced Visible-Light-Driven Photocatalysis. Angewandte Chemie International Edition, 2017, In press
  • 13. Cai, Q.; Hu, Z. F.*; Zhang, Q.; Li, B.; Shen, Z.*, Fullerene (C60)/CdS nanocomposite with enhanced photocatalytic activity and stability. Applied Surface Science, 2017, 403, 151-158.
  • 14. Jin, Z. X.; Hu, Z. F.; Yu, J. C.*; Wang, J. F., Room temperature synthesis of a highly active Cu/Cu2O photocathode for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2016, 4, 13736-13741.
  • 15. Li, Y. C.; Zhang, L.; Hu, Z. F.; Yu, J. C.* Synthesis of 3D Structured Graphene as High Performance Catalyst Support for Methanol Electrooxidatio. Nanoscale, 2015, 7, 10896-10902.
  • 16. Shen, Z. R.; Hu, Z. F.; Wang, W. J.; Lee, S. F.; Chan, D. K. L.; Li, Y. C; Gu, T.; Yu, J. C.* Crystalline phosphorus fibers: controllable synthesis and visible-light-driven photocatalytic activity. Nanoscale,2014, 6, 14163-14167.
  • 17. Yan, Z. X.; Hu, Z. F.; Chen, C.; Meng, H.; Shen, P. K.*; Ji, H. B.; Meng, Y. Z. Hollow carbon hemispheres supported palladium electrocatalyst at improved performance for alcohol oxidation. Journal of Power Sources,2010, 195, 7146-7151.
  • 18. Fei, L. F.; Sun, T. Y.; Lu, W.; An, X. Q.; Hu, Z. F.; Yu, J. C.; Zheng, R. K.; Li, X. M.; Chan, H. L. W.; Wang, Y.* Direct observation of carbon nanostructure growth at liquid-solid interfaces. Chemical Communications (IF=6.32) 2014, 50, 826-828.
  • 19. Chan, D. K. L.; Yu, J. C.*; Li, Y.; Hu, Z. F., A metal-free composite photocatalyst of graphene quantum dots deposited on red phosphorus. Journal of Environmental Sciences, 2017, 60, 91-97.
  • 20. Ren, S.*; Ye, Z. C.; Hu, Z. F.; Bai, Y. F.; Du, W. Z.; Qin, X. Z. Synthesize of ZnO Nanobelt Arrays by Solid Thermal Oxidation with Au Catalyst. Acta Scientiarum Naturalium Universitatis Sunyatseni. 2008, 47, 47-50.

     

發表專著

  • Liu, Y.; Li, J.; Hu, Z. F.; Yu, J. C. Photocatalytic Property of Phosphorus. Fundamentals and Applications of Phosphorous Nanomaterials. 2019, Chapter 8, Ed: Hai-Feng (Frank) Ji, pp 155-177 American Chemical Society, Washington, DC, USA, 2019, (ISBN: 9780841236554).

 

第一發明人授權專利

  • 1. 一種利用超富集植物制備二氧化碳還原光催化劑的辦法, 專利, 胡卓鋒; 何茜; 彭妤; 鄭甯超, 申請時間: 2020-1-18, 中國, 202010055787.7. 已授權2021-6-8
  • 2. 一種利用糖類和金屬離子制備二氧化碳還原光催化劑的方法, 專利, 胡卓鋒; 彭妤; 何茜; 鄭甯超, 申請時間: 2020-1-18, 中國, 202010055779.2. 已授權2021-6-8
  • 3. 一種利用過硫酸鹽活化去除布洛芬的方法, 專利, 胡卓鋒;鄭甯超;何茜;彭妤,申請時間: 2020-6-3,中國, 202010492665.4. 已授權
  • 4. 一種水熱碳銅光催化劑的制備及其去除布洛芬的方法,專利,胡卓鋒,鄭甯超,何茜,胡睿婷,申請時間: 2020-8-28, 中國, 202010880987.6,已授權
  • 5. 一種二維水熱碳納米片材料的制備方法及其應用,專利,胡卓鋒,何茜,鄭甯超,胡睿婷,申請時間: 2020-8-28, 中國, 202010879855.1已授權
  • 6. 一種利用紅磷來實現三價鐵/過硫酸鹽體系高效降解環境污染物的方法, 專利, 胡卓鋒,鄭甯超,胡睿婷,何茜;申請時間: 2021-6-10,中國,2021106543529,已授權
  • 7. 一種利用無定形紅磷促進三價鐵/過氧化氫體系降解環境污染物的方法, 專利, 胡卓鋒,鄭甯超,胡睿婷,何茜;申請時間: 2021-6-10,中國,202110647997X,已授權
  • 8. 一種紅磷光電極及其制備方法和應用, 專利, 胡卓鋒,盧映龍,劉銘浩;申請時間: 2021-5-17,中國, 202110531578.X, 已授權
  • 9. 一種無犧牲劑的光催化産雙氧水方法, 專利, 胡卓鋒,何茜,鄭甯超,胡睿婷,申請時間: 2021-7-6,中國 202110757870.3, 已授權
  • 10.一種利用單原子銅耦合紅磷活化分子氧降解布洛芬的方法,專利, 胡卓鋒,鄭甯超,周泉,汪睿林,申請時間: 2022-10-4,中國 202210412344.8, 已授權
  • 11. 一種紅磷複合材料光催化二氧化碳還原制備乙烯與乙烷的方法,專利,胡卓鋒,潘伯菊,羅光輝,李輝,姜盧晨,陳彩依,王一一,羅灏,申請時間2022-10-7, 中國 202210708702.X,已授權
  • 12. 一種羧基氧化石墨及其制備方法和在制備雙氧水中的應用,專利,胡卓鋒,汪睿林,張欣然,周泉,鄭甯超,何茜,胡睿婷,申請時間2022-03-09, 中國 202210234683.1,已授權
  • 13. 一種基于水氧化原位制備并活化過氧化氫的方法及其應用,專利,胡卓鋒,胡睿婷,鄭甯超,何茜,周泉,申請時間2022-06-30, 中國 2021 1 0743713.7,已授權
  • 14. 一種定向滅活阿米巴體内細菌的方法及其應用,專利,胡卓鋒,舒龍飛;鄭甯超;何祯珍,申請時間2021-08-16, 中國 2021 1 0937874.X,已授權

 

學生培養:

鄭甯超,2019級研究生,獲得國家獎學金,汪淑鈞獎學金,2023年太阳集团app首页環境學院優秀博士畢業論文,畢業後到湖南省南華大學任教授

汪睿林,2020級研究生,以單獨一作身份在Nature Communications上發表論文

何茜,2019級研究生,2021年獲得國家獎學金,2022年太阳集团app首页環境學院優秀畢業論文

陳彩依,2020級本科生,本科三年級時在Small以第一作者身份發表論文,保送北京大學讀研

王小麗,2021級本科生,本科二年級時在Small以第二作者身份發表論文,保送北京大學讀研

盧映龍,2018級本科生,本科四年級時在Nano Research以第一作者身份發表論文;本科三年級時在Journal of Materials Chemistry A (IF= 12.7,一區) 以第二作者身份(導師一作)發表論文

劉鉻浩,2018級本科生,本科四年級時在Nano Research以第二作者身份發表論文;本科三年級時在Journal of Materials Chemistry A以第三作者身份發表論文

劉唯為,2016級本科生,本科四年級時在ACS Applied Material & Interface (IF=8.81,一區)以第二作者(導師一作)發表論文,成功申請英國布裡斯托大學研究生

潘伯菊,2020級本科生,本科二年級時在Journal of the American Chemical Society (IF=16.38, 一區) 以第四作者身份發表論文

羅光輝,2019級本科生,本科三年級時在Journal of the American Chemical Society (IF=16.38, 一區) 以第五作者身份發表論文

謝偉喬,2021級本科生,本科二年級時在Environmental Science & Technology(IF-11.35, 一區)以第四作者身份發表論文

張孝越,2017級本科生,保送研究生到哈爾濱工業大學

朱悅藍,2017級本科生,成功申請美國哥倫比亞大學研究生

範亞新,2016級本科生,保送研究生到上海交通大學